Latent variables and structural equation models for longitudinal relationships: an illustration in nutritional epidemiology
نویسندگان
چکیده
BACKGROUND The use of structural equation modeling and latent variables remains uncommon in epidemiology despite its potential usefulness. The latter was illustrated by studying cross-sectional and longitudinal relationships between eating behavior and adiposity, using four different indicators of fat mass. METHODS Using data from a longitudinal community-based study, we fitted structural equation models including two latent variables (respectively baseline adiposity and adiposity change after 2 years of follow-up), each being defined, by the four following anthropometric measurement (respectively by their changes): body mass index, waist circumference, skinfold thickness and percent body fat. Latent adiposity variables were hypothesized to depend on a cognitive restraint score, calculated from answers to an eating-behavior questionnaire (TFEQ-18), either cross-sectionally or longitudinally. RESULTS We found that high baseline adiposity was associated with a 2-year increase of the cognitive restraint score and no convincing relationship between baseline cognitive restraint and 2-year adiposity change could be established. CONCLUSIONS The latent variable modeling approach enabled presentation of synthetic results rather than separate regression models and detailed analysis of the causal effects of interest. In the general population, restrained eating appears to be an adaptive response of subjects prone to gaining weight more than as a risk factor for fat-mass increase.
منابع مشابه
Author's response to reviews Title: Latent variables and structural equation models for longitudinal relationships: an illustration in nutritional epidemiology Authors:
متن کامل
Generalized Multilevel Structural Equation Modeling
A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent variables. The response model generalizes GLMMs to...
متن کاملStructural Equation Modeling (SEM) in Health Sciences Education Researches: An Overview of the Method and Its Application
Introduction: There are many situations through which researchers of human sciences particularly in health sciences education attempt to assess relationships of variables. Moreover researchers may be willing to assess overall fit of theoretical models with the data emerged from the study population. This review introduces the structural equation models method and its application in health scien...
متن کاملLongitudinal data analysis with structural equations
In this paper we review different structural equation models for the analysis of longitudinal data: (a) univariate models of observable variables, (b) multivariate models of observable variables, (c) models with latent variables, (d) models that are unconditioned or conditioned to other variables (depending on the variability of the independent variables: time-varying or time-invariant, and dep...
متن کاملمدل معادلات ساختاری و کاربرد آن در مطالعات روانشناسی: یک مطالعه مروری
Introduction: Structural Equation Modeling (SEM) is a very general statistical modeling technique, which is widely used in the behavioral sciences. It can be viewed as a combination of path analysis, regression and factor analysis. One of the prominent features of this method is the ability to compute direct, indirect and total effects, as well as latent variable modeling. Methods: This sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2010